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Abstract. Nuclear fusion is seen as a much “cleaner” energy source than fission. Most of the 
studies and experiments on nuclear fusion are currently devoted to the Deuterium-Tritium (DT) 
fuel cycle, since it is the easiest way to reach ignition. The recent stress on safety by the 
world’s community has stimulated the research on other fuel cycles than the DT one, based on 
‘advanced’ reactions, such as the Deuterium-Helium-3 (DHe) one. These reactions pose 
problems, such as the availability of 3He and the attainment of the higher plasma parameters 
that are required for burning. However, they have many advantages, like for instance the very 
low neutron activation, while it is unnecessary to breed and fuel tritium. The extrapolation of 
Ignitor technologies towards a larger and more powerful experiment using advanced fuel 
cycles (Candor) has been studied. Results show that Candor does reach the passive safety and 
zero-waste option. A fusion power reactor based on the DHe cycle could be the ultimate 
response to the environmental requirements for future nuclear power plants. 

 

1. Introduction 
Nuclear fusion is seen as a much “cleaner” energy source than fission. However, the attractive safety 
and environmental potential of fusion can be fully realised by a design in which attention is paid to 
reducing the impact of materials activation and tritium inventory [1]. Activated materials, generated 
by neutron interactions with plant structure, will be removed from the plant during routine component 
replacements, and then in decommissioning at end-of-life. Tritium is a mobile and soluble nuclide 
with radioactive safety relevance. 
 
Demonstration of the reactor “Passive Safety” (no need of active safety systems to control and 
mitigate the consequences even of the worst reasonably conceivable accidental sequences) is a 
key issue for showing a clear advantage of fusion versus fission power, in view of its public 
acceptance. Several studies in the European Power Plant Conceptual Study (PPCS) [2] and in the US  
ARIES [3] programs intend to assess fusion safety and also to evaluate the reactor behaviour in case of 
the worst reasonably conceivable accidents. Concerning radioactive waste,  since  most of fusion 
waste comes from relatively low activated material, in shielded position from the plasma, it is 
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appropriate to explore solutions that minimise the use of final repositories. For this purpose, a waste 
management strategy must aim to: 

• Recycling of moderately radioactive materials within the nuclear industry. 
• Declassification of the lowest activated materials to non-active material (Clearance), based 

upon, for instance, on the recently issued IAEA clearance levels [4]. 
If all the material could be declassified according to the latter option after a relatively short interim 
storage, then we could have the so-called “zero-waste option” for fusion [5]. 
Concerning D-T fusion, it has been found that, even if feasible in theory, a zero-waste option will not 
be possible: a relevant amount of radioactive materials from reactor decommissioning – even if 
“recyclable” – should be disposed of as radioactive waste. Most probably, those materials will meet 
requirement for classification as Low Level Waste. The production of such waste cannot be avoided – 
for fusion power reactors – by means of the choice of their structural and constituting materials: it 
always occurs if a Deuterium-Tritium fuel cycle is used. Studies have shown [6] that it is practically 
impossible to reduce the long-term radioactivity of those materials to levels allowing clearance. A 
further step – if the passive safety and zero-waste result have to be achieved - is necessary.  
 

2. Deuterium-Helium-3 Fuel Cycle 
Most of the studies and experiments on nuclear fusion are currently devoted to the Deuterium-Tritium 
(DT) fuel cycle, since it is the easiest way to reach ignition. Even if physical and technological 
demonstration of fusion power has yet to be obtained, some of the main technological questions of 
future DT fusion reactors have been identified already. Among those, in particular, the radioactive 
inventory in such reactors is due, besides tritium, to the neutron-induced radioactivity in the reactor 
structures. 
The recent stress on safety by the world’s community has stimulated the research on other fuel cycles 
than the DT one, based on ‘advanced’ reactions, such as Deuterium-Deuterium (DD) and Deuterium-
Helium-3 (DHe). With these cycles, it is not necessary to breed and fuel tritium. The DHe cycle, 
moreover, has a very low presence of fusion neutrons. In fact, the DHe cycle is not completely 
aneutronic, due to DD side reactions generating 2.45 MeV neutrons and T, and to DT side reactions 
generating 14.07 MeV neutrons. 
 
DHe fusion has its own set of problems, such as the availability of 3He and the attainment of the 
higher plasma parameters that are required for burning. However, they have also other advantages, 
like for instance the possibility to obtain electrical power by direct energy conversion of proton. A 
fusion power reactor based with DHe plasmas would not need a blanket to breed tritium, and also it 
would not need to produce electrical power indirectly, via the usual heating of a thermo vector fluid 
(such as water of liquid metal) and its use in a thermodynamic cycle with a turbine [7].  
In other words, we do not find in a fusion power reactor with DHe plasmas any similarity left with 
nuclear fission reactors. 
 

3. Ignitor and Candor 
To begin to explore the possibilities of DHe plasmas, a DT burning plasma experiment at high field 
and plasma densities, which can be much closer to the required parameters than present-day 
experiments, is particularly attractive [8]. 
Compact high-field experiments were the first to be proposed in order to achieve fusion ignition 
conditions on the basis of existing technology and the known properties of high-density plasmas. 
Good confinement and high purity plasmas have been obtained by high field machines Alcator/Alcator 
C/Alcator C-MOD at the Massachusetts Institute of Technology [9] and Frascati Torus Upgrade 
(FT/FTU) at ENEA in Italy [10]. 

497



Ignitor is a proposed compact high magnetic field tokamak, and it is aimed at reaching ignition in DT 
plasmas and at studying them for periods of a few seconds [11-13]. However, the plasma density limit 
in Ignitor is well above the optimal density for DT ignition, and it is suitable to the higher densities 
required for DHe burning. In fact, Ignitor has been also designed to satisfy conditions where 14.7-
MeV protons and 3.6-MeV alpha particles produced by the DHe reactions can supply thermal energy 
to a well-confined plasma [14]. In particular, Ignitor can sustain plasma current exceeding that 
required to confine proton orbits at birth, and has more than sufficiently high densities so that the 
slowing-down time of both the protons and alpha particles is shorter than the electron energy 
replacement time of the thermal plasma in which they are produced. Preliminary analyses show that a 
fusion power PF ≅ 2 MW may be reached [15]. In particular, as a start, Ignitor can allow initial studies 
at the level of approximately 1 MW of power in charged particles from the DHe reaction in a mostly 
DT plasma [14-16]. 
A design evolution of Ignitor in the direction of a power reactor using a DHe fuel cycle has been 
proposed. A feasibility study of a high-field DHe experiment of larger dimensions and higher fusion 
power than Ignitor, however based on Ignitor technologies, has brought to the proposal of the Candor 
fusion experiment [8,14]. The main characteristics of the Candor machine are the following: the major 
radius Ro is about double than Ignitor, plasma currents up to 25 MA with toroidal magnetic fields 
BT≅13 T can be produced. Unlike Ignitor, Candor would operate with values of poloidal beta around 
unity and the central part of the plasma column in the Second Stability region. The toroidal field coils 
are divided into two sets of coils and that the central solenoid (air core transformer) is placed between 
them in the inboard part. 
The DHe ignition regime can be reached by a combination of ICRF heating and alpha particle heating 
due to DT fusion reactions that take the role of a trigger. Thanks to this fact, and unlike other proposed 
DHe fusion experiments, Candor is capable of reaching DHe ignition on the basis of existing 
technologies and knowledge of plasma. With this method, the need for an intense auxiliary heating, 
which is one of the main technological drawbacks of DHe ignition, would be considerably alleviated, 
becoming feasible with the present technology. However, this method has the disadvantage of using 
tritium and of presenting a higher neutron flux (due to DT reactions) than ‘pure’ DHe plasmas, and a 
neutron flux transient when passing from the initial DT trigger reaction to the final DHe burning 
plasma. 
The characteristic times over which the plasma discharge can be sustained are longer by more than a 
factor of 4 than those of Ignitor. 
 

4. Safety assessment 
Tritium inventory in Candor is expected to be very small and not to be a problem from the safety 
viewpoint.  
As far as neutron-induced radioactivity is concerned, neutron transport calculations to determine its 
neutronics were performed for Candor, and the results are available in [17]. Neutron activation has 
been calculated in [17] also: activity concentrations and dose rates are the main output of the 
simulation. Table 1 shows activation data at end-of-life (maximum) irradiation. 
The main result of the study is that neutron activation is quite moderate. For instance, the maximum 
dose rate of the most radioactive component is 600 times lower than that for Ignitor after the end of 
DT operation. 
 
Concerning demonstration of the reactor passive safety, it would be necessary to evaluate the reactor 
behaviour in case of the worst reasonably conceivable accidents. Those assessments have yet to be 
completed for Candor, however a preliminary evaluation can be carried out in terms of consequences 
of an environmental release of activated reactor material in case of accident. 
We may evaluate the dose to Most Exposed Individuals (MEI) of the population around the reactor 
site, due to the release of a given quantity of activated material, say 1 kg of the most activated 
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component at the end of machine’s life (higher activation case). A short-circuit in the reactor magnets 
could lead to partial meltdown and vaporisation of that component, and – in absence of any active or 
passive mitigation – to the release of the radioactive vapour to the environment. 
However rather conservative, this scenario is useful for a first assessment. We used the GENII 
population dose code [18] for our estimates. Results show that the airborne release of 1 kg of activated 
material from  the internal toroidal magnets (at their highest activation, that is, about 4.3 106 Bq/kg 
with no interim cooling), would cause an Effective Dose Equivalent (EDE) to the MEI of about 5.2 
1010 Sv, all pathways included, committed EDE due to an acute release, no mitigation. Cu64 is the 
main nuclide contributing to the EDE. This value is practically irrelevant from any radiological 
viewpoint. However, if we think to a conservative amount of the Candor most activated components 
that could be accident-prone in theory (say, 100 tons), our results permit us to determine that, even if 
all those Candor machine components were instantly vaporised and released via atmosphere to the 
environment, the committed EDE to the population’s MEI would be insignificant, no more than a few 
microSieverts committed in 50 years. One can compare this value to the annual natural background 
radiation level (around 2000-3000 microSievert). This means complete passive safety from the 
radiological viewpoint for Candor, in case of any conceivable accident. 
 
Concerning radioactive waste, the quantity and quality of radwaste from the machine exercise and 
decommissioning has been estimated: total radioactivity concentrations in Table 1, nuclides 
concentrations and gamma dose rates show that no Candor spent material will need to be disposed of 
as permanent waste in underground repositories. All materials will be able to be recycled, if 
convenient, after a short interim decay. Most of the components far from the plasma, on the other 
hand, could be declassified to non-radioactive waste and released from regulatory control. In practice, 
all the components - even those closer to the plasma chamber - if a longer interim decay is accorded, 
can be eligible for clearance, according to the IAEA limits. In particular, all components but internal 
magnets may be declassified after less than 10 years of decay. For internal magnets, 20 years of 
interim decay are necessary. Candor does reach the zero-waste option, without the need of any 
materials selection, low-activation materials, or shielding. 
The final design of a fusion power reactor with DHe plasmas has yet to be conceived. However, the 
passive safety and the zero-waste option is a reachable goal for such reactors, as the results for Candor 
have indicated. 
 
Table 1 - Neutron activation in Candor main components. Activity concentration (Bq/g) at different 
decay times after maximum (end-of-life) irradiation. 
Component Zero 1 day 1 week 1 month 1 year 10 y 25 y 

 
Internal Toroidal Magnets 4.3 106 8.0 105 9.2 102 5.1 102 3.9 102 1.3 102 40  
Transformer Coils 3.0 105 5.9 104 5.1 101 2.4 101 1.7 101 5.0 1.7 
External Toroidal Magnets 9.7 104 1.9 104 1.3 101 5.4 2.8 0.47 0.18 
Structure (C-Clamp) 1.4 103 9.6 102 2.6 102 4.2 101 2.0 0.21 0.023 

 
 

Conclusions 
This paper concentrates upon the safety and radioactive waste issue for fusion. Innovative solutions in 
those areas could be a clear advantage of fusion power versus fission, in view of its ultimate safety and 
public acceptance. Concerning waste, clearance (i.e., declassification to non-radioactive materials) of 
all reactor components, after a sufficient period of interim decay, should be the final goal for an 
environmentally acceptable reactor. Demonstration of the reactor passive safety it would also be 
necessary: this concept may be translated as negligible doses to population even in case of the worst 
conceivable accidents with radioactive environmental release. 
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Even if feasible in theory, a zero-waste option for fusion reactors using the Deuterium-Tritium fuel 
cycle will be difficult to obtain: a relevant amount of radioactive materials from reactor 
decommissioning – even if recyclable within the nuclear industry – should be disposed of as 
radioactive waste, mainly due to economic reasons connected with the excessive interim decay time 
that is necessary to allow their recycling. Most probably, those materials will meet requirements for 
classification as Low Level Waste. 
 
As a further step towards the zero-waste and passive safety options, the features of fusion reactors 
based on alternative advanced fuel cycles have been examined, to assess whether those goals could be 
reached with such devices. 
In fact, fusion reactors with advanced Deuterium-Helium-3 (DHe) fuel cycle have quite outstanding 
environmental advantages, such as the quite low presence of Tritium, neutrons and activated materials. 
Ignition in DHe plasmas, however, is much more difficult to obtain than for DT plasmas. Compact 
ignition tokamaks can be designed in order to achieve DHe ignition without excessive auxiliary 
heating, if a DT plasma is used as a ‘trigger’ for the DHe reaction. Ignitor, a compact ignition 
experiment aimed at studying DT plasmas, may also be used in that direction. The extrapolation of 
Ignitor technologies towards a larger and more powerful experiment using advanced fuel cycles 
(Candor) have been described too. 
 
Results obtained for the Candor study show that no environmental problems will arise from such 
reactor, from the radiological point of view, even with the presence of DT plasmas triggering. Candor 
does reach the zero-waste option. Concerning safety, we have shown complete passive safety from the 
radiological viewpoint for Candor, in case of any worst conceivable accident. 
Studies for the development of compact ignition tokamaks and advanced fuel cycles must be carried 
out in parallel with the current mainstream development line, which deals with larger tokamaks and 
DT plasmas, i.e. the ITER (International Tokamak Experimental Reactor) and DEMO designs.  
We think, in fact, that a fusion power reactor based on the DHe cycle could be the ultimate correct 
response to the environmental requirements for future nuclear power plants.  
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