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A radial flow of impurities toward the outer edge of a magnetically confined plasma is produced, following
an accumulation of impurities at the center of the plasma column, by impurity density gradient driven
modes for realistic values of the temperature gradient of the main ion population relative to its density
gradient. At the same time an outward transport of the main ion thermal energy is also induced. For mean
free paths of the main ion population shorter than the relevant longitudinal wavelengths, these modes can
be described by moment equations and are associated with the finite thermal conductivity of the main ions.
In the opposite (collisionless) limit, mode-particle resonances replace the effects of finite ion thermal

conductivity and in addition, modes that are standing along the magnetic field lines are affected by the
magnetic trapping of a fraction of the main ion population. The expression for their growth rate is strongly
influenced by the ratio of the effective trapped ion collision frequency to the mode frequency and under
realistic conditions, can be independent of mode-particie resonance processes that involve only a relatively

small portion of velocity space.

I. INTRODUCTION

A number of recent high-temperature toroidal plasma
experiments have made it clear that the presence of im-
purities can have significant effects on the equilibrium
state and transport properties of the plasmas involved.
In the present paper we examine impurity driven plasma
modes in a number of different collisionality and wave-
length regimes, and estimate the quasi-linear effects
that the modes can have on the transport of impurity
ions across the magnetic field! and on the related ion
thermal energy transport.

In Sec. II, we distinguish the different regimes of in-
terest: a collisional regime when the main ion colli-
sional mean free path is shorter than the distance over
which the magnetic field is periodically modulated and a
trapped ion regime when it is much longer. Also, we
distinguish a regime with modes described by fluid
equations when the mean free path is shorter than the
wavelength of the mode along the magnetic field, and a
regime with modes described by kinetic equations in-
volving consideration of velocity space in the opposite
limit. Finally, we distinguish between travelling modes
with wavelengths along the magnetic field much shorter
than the magnetic field periodicity length, and standing
modes with modulation lengths of the same order as that
of the magnetic field.

In Sec. III, we consider dissipative fluid modes®? in
two opposite limits of the main-ion impurity-ion colli-
sion frequency, which are associated with the finite
longitudinal thermal conductivity of the main ion popu-
lation and the thermoelectric effect, and depend on fric-
tion due to main-ion impurity-ion collisions. The mode
corresponding to large collision frequency can be un-
stable for realistic values and signs of the main ion and
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impurity ion density gradients and of the main ion tem-
perature gradient.

In Sec. IV, we consider kinetic modes with wave-
lengths along the magnetic field short compared with
both the magnetic field periodicity length and the colli-
sional mean free path.?* We distinguish an “impurity-
sound mode” and an “impurity drift mode” for values of
the impurity strength, or effective plasma ion charge
number, considerably larger than or of the order of
unity, respectively, and impurity ion relative tempera-
ture gradients of the same order as the relative impuri-
ty ion density gradient. For large impurity ion relative
temperature gradients, we find a fluid-like (nonreso-
nant) instability. When the impurity ion density gradi-
ent is much larger in magnitude than that of the main
ions, fluid-like instabilities can also occur.

The impurity particle flux and the main ion thermal
energy flux are calculated for all these modes in the
quasi-linear approximation, in terms of the amplitude
of the perturbed electrostatic potential. A sequence of
instabilities is envisioned to be excited at different
stages of the evolution of the impurity density radial
distribution. The result of this sequence is that im-
purities are carried outward,! in the presence of a fi-
nite temperature gradient relative to the density gradi-
ent of the main ions, and become accumulated at the
outer edge of the plasma column, a process that we in-
dicate as “self-decontamination.”

In Sec. V we study collisionless modes that are
standing along the magnetic field lines in the collision~
less (Vlasov) limit. The modulation periodicity of these
modes is that of the magnetic field and the relevant per-
turbed electrostatic potentials are odd around the point
of minimum magnetic field along a given field line. A
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general quadratic form, in the perturbed electrostatic
potential, of the quasi-neutrality condition, which can
be regarded as an effective dispersion relation, is de-
rived, using fluid equations for the impurity ions and
the guiding center approximation for the main ions. On
the basis of this quadratic form we identify an impurity
sound mode and an impurity trapped particle mode cor-
responding to different values of the impurity strength.
For a main ion temperature gradient smaller than a
critical value, instability requires that the main ion
and impurity ion density gradients be in opposite direc-
tions, while for larger main ion temperature gradients,
instability can occur with the density gradients in the
same direction. The impurity trapped particle mode
can be seen to become macroscopically unstable, in the
sense of not depending on wave-particle resonances
which involve only a small portion of velocity space,
under realistic conditions of the various density and
temperature gradients involved.

The same formalism that leads to the quadratic form,
in the perturbed electric potential mentioned here is
used to derive the quasi-linear equations for the various
average distribution functions. On this basis, estimates
of the impurity particle flux and the main ion thermal
energy flux are made.

In Sec. VI, the effects of main ion collisions are in-
cluded, specifically for trapped main ion effective col-
lision frequencies less than the average trapped ion
bounce frequency, by means of a simplified collision
operator. With respect to odd modes, whose perturbed

electrostatic potential is antisymmetric about the point
of minimum magnetic field, we find a dissipative mode
whose growth rate depends on the collision frequency
and which can be identified with the drift mode discussed
in Sec. V.

The effect of impurities on even modes, whose per-
turbed electrostatic potential is symmetric around the
point of minimum magnetic field, is illustrated by the
dissipative trapped ion mode that was treated in Ref. 5.
Here, we find that in the presence of a finite ion tem-
perature gradient, impurities can stabilize this mode
only if they have a reverse and much stronger relative
density gradient.

In Sec. VII, we recall the conditions for the equilib-
rium collisional (classical) impurity particle flux to
vanish in various regimes of the main ions and the im-
purity ions. In general, this condition occurs when the
impurities are accumulated at the center of the plasma
column for main ion temperature gradients less than a
certain critical value, and when the impurities are con-
centrated at the outside of the plasma column for main
ion temperature gradients greater than this critical
value. This collisional critical temperature gradient is
always greater than the corresponding critical tempera-
ture gradient for the impurity modes considered in
Secs. IIl, IV, and VI. Thus, for values of the actual
ion temperature gradient between the two critical tem-
perature gradients, we can have a situation in which the
impurities are concentrated at the outside of the plasma,
with the classical inward impurity flux balanced by the
outward impurity flux due to the various impurity-
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driven modes. Some of the properties of these modes
are summarized in Table I.

Il. REGIMES OF INTEREST

Consider a plasma that is confined by a magnetic field
B that is periodically modulated in magnitude over a
distance L. For simplicity, this plasma is assumed to
be composed of three species: electrons, main ions
with charge number Z; =1, and impurity ions with
charge number Z >'1. The relevant quantities are in-
dicated by the subscripts e, ¢, and I, respectively. We
recall that a quantity of frequent use in this connection
is

ZE=m,Z%+n)/n, , (1)

where n,=n,Z +n,;, so that ZF21. We shall mostly con-
sider the realistic case where Zf~1. We indicate the
collision mean free path of the main ion population by

A; and consider

(1) a collisional regime where
<L, 2)
and
(ii) a frapped ion regime where
»(AB/BP2>L, 3)

AB representing the magnetic field modulation. We re-
call that \; =,/v,, v;=(2T;/m,)"?, and
VsV, Va/va~Zn/n (4)

vy; and v, being the average ion—ion and ion-impurity
collision frequencies, respectively. In the case of the
impurities ’

Vg _myn
Vr=Vp+Vrrs ;:‘;=E:';f ’
Vit g ﬂ(ﬂ):a/z(ﬂy/z o (5)
Vi ny \T; mp
We shall consider
T,~T;ST, (6)

as a realistic ordering.

We refer to low-8 plasmas, with 87(n,T;+n,T,)< B,
and limit consideration to electrostatic modes such that

E=-Vd, &=5(x)eivt, (7)

In the case of a one-dimensional, plane equilibrium con-
figuration in which the confining magnetic field is in the
2 direction, we may take

®(x) = b (x) expli kyy +iky2) (8)
and the relevant longitudinal wavelength is
No=21/k, . (9)

In the case of more complex geometry, we take, for
order of magnitude estimates,

B-Vo(x) |

Ay~ "—ﬁ;&)— . (10)

In particular, if we consider modes with
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Collisionless trapped-

{wedp <w<{wp)g< (wy) ¢

nonresonant or resonant

Outward® for o;> 0 andn,>n,,.

Inward for oy <0 and n,<n,,.
(166).

ion mode
Eq. (154) or (156)

A NL; >\<<A|

Outward!

Inward for o;<0

(195)

<°~’t>1 <w < <<Ua>‘ <Swp e
nonresonant

Ay Ly <Ny
Outward for ¢;> 0 and

Dissipative impurity
n,> 4.

mode
and n, <%,

Outward!

Eq.
A general expression for n,, is given by Eq.

>~ £,

2(1 —w/w, )/ (L+2b)) for b;<1 and Ny~ (1 - w/w, ) for b;>1, where b
~ 2

» Py is the main ion gyroradius, and k, =k, is the mode wavenumber perpen-

Z¥ ny/ny.
‘Here, = 2{1+(Z2,/2)ny/n o/ L+ T/ 0, T} for |opl ~2Z>1.

(88)d
SHere, 7y =

resonant

i
dicular to the magnetic field.
"Normally, 7y,

Inward for n;<n,,.
k

Ay~ Ly <Ay
Impurity sound mode
vp<w/R<v <v,
Outward®# for n,>n,,

Outward?

Eq.
and Z,
=1

—2
‘Whenever the mode is unstable, that is for n,>7,, and o> 0 or forn; <n;, ando; <0.

Inward

A <LiAy <Ay

Resonant “drift”’ mode
vp<w/ky <vg<v,

Eq. (83)

resonant

Outward® for a;> 0

and 71‘ > nlC'

for a;> 0 and Ny <7y,.

Outward!

d lnng/dr)/{d Iny/dv),

Inward for

ny<% and o< 0.

Qutward!

Collisional fluid mode

iy

Ap<Ay <L
vy<w/ky<vi<v,
Eq. (71)
nonresonant
Outward for M >3
and 0;> 0,

(@ lan;/dv)?, o,

Inward
Z,/n, 25(Ty/Ty) for instability.

for n;<n;, and o, <0.

Outwara?

Outward® for n;>n,,

Collisional fluid
and o;> 0.

Impurity driven modes.
Ag<A <L
mode I
v<w/Ry<vy<vg
Eq. (41)
nonresonant

(d InT,/dv)/ d lnn,/dr), 7y

the magnetic field, and L is the maguoetic field periodicity length.

*Here, mode I (ID) corresponds to (vy/w)> (<) (myng/mny), where vy is the colli-

sion frequency of the main jons with the impurities.
°Here, “‘resonant” means the growth rate is due to a mode-particle resonance term

involving only a small portion of velocity space.

2Here, A; is the main ion collisional mean free path, A, is the mode wavelength along

Main ion thermal
9This mode requires Z,

TABLE 1.
Regime®
Label
Frequency
range
Growth
rate®
Impurity
flow®
energy flow®
®Here, 7;

-
_
S
[~]
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MN<L, (11)

we may ignore the effects of the equilibrium magnetic
field periodicity and refer to a one-dimensional, plane
equilibrium as an adequate representation of more com-
plex confinement configurations. The relevant modes
can be represented by Eq. (8) and they are of the travel-
ing type.
In the case where
M~L, (12)

it is important to take into account the effects of the
magnetic field modulation, such as particle trapping,
and refer to a realistic equilibrium configuration. In
particular, the relevant modes may be standing along
the magnetic field and will be described in Secs. V and
VI.

Referring to the length of the ion mean free path, we
have collisional fluid modes if

A <Ny, (13)

and in this case moment equations with the appropriate
transport coefficients give an adequate description. On
the other hand, when

Mo<Ag (14)

the fluid description is inadequate and appropriate ki-
netic equations have to be adopted. In particular, when

M~ L<x(aB/BP% (15)

trapped ions have a strong influence on the stability of
impurity driven modes. We shall label them as either
dissipative or collisionless, depending on whether their
growth rate depends on the collision frequency of
trapped ions or not.

ill. DISSIPATIVE FLUID MODES

As was pointed out in Sec. II, collisional fluid
modes?®%° described by moment equations” can be
found for

X <N <L (16)

We neglect all finite gyroradius effects and adopt a
guiding center description for all species. The modes
of interest are associated with the finite thermal con-
ductivity, along the magnetic field, of the main ion
population, the thermo-electric effect, and the friction
due to i-I collisions. They are found in the frequency
range

v <w/k,Sv;<v, . (17)

The relevant range of mean free paths is such that

Bt O N A
jad (L Qg wS Fnbi Fule s (18)
vy v, v,

v, representing the average collision frequency for each
species.

The modes under consideration satisfy the quasi-
neutrality condition

Py =Ty + 27y . (19)
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Thus, for #,~#, we have

a2

2
n Z,n (20)
where
Ze=nIZa/n¢ . (21)

This implies that if we assume Z>1 and Z,~ 1 the rela-
tive density fluctuations of impurities are larger than
those of electrons and main ions.

For the electrons the perturbed momentum balance
equation along the magnetic field,

O=—V"(ﬁeTe)+eneV"(5 s
reduces to
fi,/n,=ed/T, . (22)

The main ion and impurity ion mass conservation equa-
tions in the guiding center approximation are
9 ch x B

TS

°Vn, +njv||u!|| —0 (23)

where j=i,I. We define

cTi d dlnn/dx

Cxr =B G Inny =070y 5 01 Edlnm/dx ,  (24)
and at first assume
o;~1. (25)

A derivation of the full dispersion relation for arbitrary
o, will be given in the appendix. Then, from Eq. (23)
we have, recalling Eq. (20),

Zl__[___ e¢ kuu[n
ny o’w T, ® (26)
and
0= Lus €0 Rty @7
w T, w

In view of Eq. (18) it is realistic to consider the
quantity

w nlm, mpr
s 2
Vi M T my Z

(B2 )2 (28)

as well below unity for Z>1. In this limit the thermal
electric force and the friction force resulting from col-
lisions between the two ion populations play an impor-
tant role in the ion momentum balance equations. From
the impurity ion energy balance equation it can be seen
that in the relevant limit we have 7,;=7,, which results
from the strong collisional coupling of the impurity to
the main ion population. On the other hand, the colli-
sional transfer of thermal energy to the main ions may
be neglected in view of the smallness of n;/n;. The to-
tal ion and impurity momentum conservation equation
along the magnetic field gives

0=-V@,Ty+n, T, +end)

and then
;li 6(5 T‘
S _ Iy _ i, 29
n, Ty T, (@)
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This implies, for consistency with Eq. (27), that
W<l weyl

The longitudinal momentum balance equation for the
impurity population is

0=ay;n VT +Byvimmy g, —iin)
so that

- kT T

(uiu u[u) ==i E:; Vs Ft‘ . (30)
The oy term corresponds to the thermal force resulting
from collisions between the main ion and impurity popu-
lations, and the 8;, term corresponds to the analogous
friction force. The coefficients a4, and 8,; are tabu-
lated in Ref. 8 for a number of values of the impurity
strength Z,. In particular, 8;;,~1 for Z,51 while a,; is
proportional to Z, for small values of Z,.

In order to obtain T,/7T, we refer to the ion thermal
energy balance equation

38 (xiTi\ge
== v2
[2 ot (u,m, T,
qu x B
BZ
where x;~1 is tabulated in Ref. 8. Then, recalling
Egs. (27) and (30), we have

o )25 5
myw/ T, T,

VT, =T\ ~ityy= @y TV, (g = %), (31)

3
=32C

(1 -31), (32)

where %, =x, + af,v,/(ﬁ,,v,,), and

_dInT,/dx

"= Fon, Jdx (33)

We notice that the finite ion thermal conductivity and
thermal force terms make f‘, out of phase with d; and
can be expected to be responsible for the instability
process of interest. Then, for simplicity we may con-
sider the limit

BT,/ wvym ;> 1 (34)
and obtain

Ty__ l‘&f_t ¢

T, i R ET (1-3n, . (35)

A substitution of Eq. (35) into Eq. (30) gives
Ry - - n
;" (g, = 2ty = Ct, Oxi (- l) (36)

where &, = (a”v,)/(B,,u,,i,). The main ion density per-
turbation is obtained from Egs. (29) and (35).

n e Viw.
Bi_ _ ¢(1_ M‘r"(l-zm) , (37)
ny XikiT

and the impurity ion density perturbation follows from
Eqs. (26), (27), and (36)

e (1 - o)+ &1 -En))] (38)

Consequently, the relevant dispersion relation is

Ty Ze _ Vt imy
1+T Z w [((71 1)+0l](277(_1)] x‘kﬁT (2774 1) .
(39)
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From this it is easy to evaluate the real and imaginary
parts of the frequency and to see that the instability
condition is

Gn - Vllo, - D+a,6n,-1)]>0. (40)

The relevant growth rate y =Imw is significant only if
it is larger than the collisional rate of evolution of the
equilibrium state that is discussed in Sec. VII. Then,
we may estimate

Zg v
L Foi, kz‘ (41)

and require

E (Z >z v

(2 ) i 42

2 \z.) 7, (42)
a condition that is easily satisfied.

The inequality (40) indicates that if n,>%, instability
can occur for o,>0, that is, starting from a state where
impurities are accumulated at the center of the plasma
column, and in particular for

0,>1—a,(3n,/2-1) . (43)

Next, we reconsider the same problem in the limit
where

~2/Z,>1 (44)

that is relevant to the discussion given in Sec. VII. In
this case

W Wy
and Eq. (27) changes to

Ruiti _My Wy ﬂ

w n w T; (45)
and Eq. (35) to
Ty . vomw ;(3 e¢>'
e e adia e 2 —14+2 . (46)
T RikiT, 2" wyi/ Ty

The main ion density perturbation is obtained from Egs.
(29) and (45)

;lg e¢ [ ViWgi ((JJ 3 )]
—£= it +37; -1} . (47)
n, T, BTR; \o; o

In addition, Eq. (26) gives

@-_ﬂ(ﬁ_gﬂ 4
n T; w 91 (48)

so that the relevant dispersion relation is

Ti,Ze ) @ai_ ’LL_(
i -1 49
Yep +Z7 07, ¥T,R, w*{””* (49)

and the instability condition becomes

[g m-1-20, (1 +%)'1] >0. (50)

Then again, if 7, >2  as is realistic to expect, and for

0<o, <—<1 +——)(2m 1), (51)
we may argue that the relevant instability will tend to

redistribute the impurity density, starting from a state
of accumulation around the center of the plasma column,
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toward the outer edge of this as indicated by the follow-
ing discussion.

We consider the quasi-linear particle and thermal en-
ergy transport across the magnetic field and notice that,
since #, and $ are in phase, no net transport of elec-
trons is produced. However, on the basis of the same
theory, we expect that a rearrangement of the impurity
spatial distribution, as well as transport of ion thermal
energy, does result from the relevant modes. In order
to estimate the flux, we consider the quasi-linear mass
conservation equation for the main ions

n,+ << n,g?)*+c,c.>>=0 s (52)

where the brackets indicate a phase average, and notice
that, from charge neutrality,

9 Z 9
8t1nn’__Ze 57 0% - (53)
This indicates that the rate of redistribution of the im-
purity population is considerably faster than that of the
main ions for Z/Z,>1 and we can evaluate the former
from the 1atter. In particular if

oy 8 (38
81 ‘ax(B‘ ax”‘> ’ (54)
we also have

D,=-(Z/Z,0,)D, , (55)

so that the radial fluxes of main ions and impurity ions
are in opposite directions. Then, if we consider the
case where 0,~ Z/Z, and the limit (44), corresponding

to Eq. (47)
KT, ) (wo 3 )
—ti ) (20, 1,
Fwgvym Wi 2=
(56)
where wy=Rew. Combining Eqs. (52) and (56) we obtain

__cTyf v >2k2p ed ( )
D;= eB <£iknvi ky Wy ¢ +277i 1 (67)

T,
so that, recalling Eq. (49),
3 Z T\
Dim—[im_l—fe(l"'}j) 0‘1] . (58)

We see that if the condition for instability (51) is satis-
fied we have D;>0 and the flow of impurities is directed
outward. Since w/wy;~0,Z,/Z, we may argue that, in
view of Eq. (57), if we start from an equilibrium state
where impurities are accumulated around the center of
the plasma column, their outflow will continue for 7, >%
until o,~1 - ,(37n;/2 - 1) as indicated by Eq. (43). The
ion thermal energy transport can be evaluated from the
contributions of the E x B drift in the quasi-linear ther-
mal energy balance equation for the main ions

%T +a<< kv * +c. c>> 0. (59)

Then, referring to Eq. (29), we have

(ingd* +c.c.)) =2e|d|? ni(

(T e == md* +e.c) (60)

so0 that
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8, _8(D 8

a7 11" (n ax T‘) ’ (61)
The quasi-linear diffusion coefficient is significant

only when it is larger than the collisional one. The lat-

ter can be derived from Sec. VII.

Z vuTly

2
Z,0p SEm, (62)

Dy=m——

so that we obtain

Dy 2K v |ed
Dy X B2 vy Ty

(63)

Thus, referring to Eq. (42), it is possible to have

D;> D, for relatively low fluctuation levels led/ T,l.

As for the possible values of Ie(ﬁ/TiI it is difficult to
indicate, in general, those that correspond to the sat-
uration level of the relevant instability in a given ex-
perimental situation. In order to obtain an estimate for
the fluctuation amplitude that may be reached, we may
assume that the impurity density distribution is changed
by the instability until the linear and the nonlinear
terms within the mass conservation equation become of
the same order

d

—-—n,~1-V7
xdxl I

where u=BxV¢$/B? so that

/1y~ N/ Var (64)

where A, is the typical radial wavelength and 7,; is the
impurity density scale length. Then, referring to Egs.
(21) and (29), we have (e¢/T,)~ (#,/n)~(Z,/Z)(n,/n;) so
that

e&) Ze A,
—r.Zefx 65
T; Z 7y (65)
Notice that D, can be rewritten as
L Z % cT; [ed|?
D= Z,0; @ y’rnie_BL T 1 (66)

where 7,; is the main ion density scale length. Combin-
ing Eqs. (65) and (66) we obtain

D, =292, (67)

Now, for the sake of completeness, we consider the
limit where?8

KT,

Vir  mun
wzmi

, (68)

W mny
and obtain the closest collisional version to the impurity
drift instability which we shall treat in Sec. IV. These
limits imply that m,;>Z%n, and that Z,<1. Thus, Eq.
(68) is appropriate to the case of a plasma with a small
amount of low-Z impurities. Then, the longitudinal mo-
mentum balance equation for the main ions is

0=V, (#T;+n,T,) - eniV“{t-) (69)
so that

ﬁ €¢ Ty

7 T‘ T{ =0. (70)

Substituting Eqs. (22), (26), and (70), neglecting #,,, in-
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to the quasi-neutrality condition (19) we obtain
Ze w*i i‘_L
1 + T + 70, T, 5’ (71)
where from the ion energy balance equation (31) in the
limit (34),

7-1 Vimpw w
_.i,=l_u<(%m— 1)+w—> :

72
ed XikﬁTt *i (12)

From this it is easy to evaluate the real and imaginary
parts of the frequency and to see that the instability con-
dition is, assuming dn;/dx <0,

-1 Z Z ¢
By Z,0, 2T

1)(1 +;—:)>1 , (73)

where

' -1
Wy = w(o,%w*,> <1 +%) .

As indicated by Eq. (73), the relevant instability is ex-
cited when impurities are accumulated at the center of
the plasma column if 77, > % and vice-versa. The discus-
sion of the quasi-linear transport due to this mode can
easily be inferred from the one given in the next sec-
tion.

If the high temperature plasma being considered is
surrounded by a cold plasma blanket, the cold ions will
have some similarities in behavior to the impurity ions
considered here, in that they constitute a distinct popu-
lation with thermal velocity smaller than that of the
main ions. In particular, we might expect analogous
modes to develop, with the possibility that these have
the effect of transporting the cold ions inward into the
hot plasma region if the relevant temperature gradient,
represented by 7;, is sufficiently flat.

IV. RESONANT SHORT-WAVELENGTH MODES
A. Linear analysis
Now we consider the case where?®
Ay <<y, (74)
and
MEL,

so that we may ignore the effects of the magnetic field
periodicity and refer to a one-dimensional, plane equi-
librium, and we ignore the influence of collisions on
the modes that can be excited. The relevant frequency
range is given by (17). The equilibrium distribution
function is taken to be of the form

A= fus 0+ F) (75)
where, for kinetic energy ¢,

n5(x)

f”’(x)=[27rT (x)/m, 7% eXp(T (x)>
and

p [dlnn dlnny _dInT, (g_ e)]

fi= QL dx dx \2 T,
The perturbed densities in the frequency range being
considered are obtained from integration of the per-
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turbed Vlasov equation along particle orbits and, for the
frequency range (17), can be written as®

- )
e S (12 - nlb P14
1
_E%—m:zm' Jlo(b,)exp(—b,)}, (77
and
711 1’11‘;?b {%WI I[I*PWI 2771<1+WI kz WI)]}

(78)
where b,=(1/2)k2%p%, F(b;)=b; —b,1,(b,)/I4(b,), Ioand I,
are modified Bessel functions of the first kind, w,;
=k,(cT;/eB) X (dlnn,/dx), wy;=n,;w,;, n;=(dInT;/dx)/
(dInn;/dx), wy;=0,wsy, 0;=(dInn;/dx)/(dInn,;/dx), and

W= W(knvj)c—n'lfzj dt et / ( P j) (79)

We have neglected finite gyroradius corrections for the
impurity population as we consider

“b{(m;/m{Z2)<l . (80)
For

vy Sw/k, <v; (81)
we have

2

e @ Nl @ ‘)

W, 1+2(kuvi> im (Ikulv,- ,
and

~‘=_€£ /e W

7y T, n([1+11r Ik.,lvilo(b‘)

x exp(—b,) (1 - %ﬁ{l -mls+ F(b,)]})]. (82)

Then, the quasi-neutrality condition
1, =Ny + ZHy,

may be written as

Z,w "
_7e_5*£{1+w,-§n, [1 (kﬁT’W,>+ W,]}

=(1 neT‘—ZeQW,)+IO(b ) exp(— b, )in'/?
t

n,T lk,,l v,

x(1- 220 -l PO )

where Z, is given by Eq. (21).

In deriving the result (83), we have neglected mag-
netic curvature drift effects. To include this effect for
the impurity ions, we define the impurity ion curvature
drift frequency @p,=k,g,m;c/(eBy), where g; is an ef-
fective gravitational field, acting on the impurity ions,
that is introduced in order to simulate the drift of the
impurity ions in an unfavorable magnetic curvature re-
gion. We note that Wy, = w,,(+,;/Ro)0p, Where @, is a
dimensionless constant of order unity, »,,=-(d In#,;/
dx)™!, and R, is the radius of magnetic curvature which
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for a toroidal configuration (see Sec. V) is L/(2nq), ¢
being the inverse rationalized rotational transform, and
gr=—apT,/(mRy). Including this term in the analysis,
the left-hand side of Eq. (83)becomes, for ¢,=7/R,,

Zew wim
-z ;1{1+W,-—%17,[1 <k >+W,:‘

+<%L)€oau<l‘%§i e (1+771))}

0

and we see that this would add only a correction term of
higher order in €, to the value of w that can be obtained
from (83). The magnetic curvature effect for the main

ions is even less important, so that we are justified in

neglecting them for both ion species.

At first we consider the case where 7;$1 and w/(k,v;)
>1 so that W; can be taken as real. Then, marginal
stability corresponds to

w=wg L= ld+ FO)]} (84)

We may distinguish an “impurity-sound mode” corre-
sponding to relatively large values of Z,, such that

; W~ 1>7°’*’
and, since W;%0.2,
Z,25(T,/T,), (85)
where
w> (5/ZNT,/T)wys - (86)

When these conditions are met, the real part of the fre-
quency is given by

ne Ty -z,

1+n T,

i WI:O Py (87)
I
and the imaginary part by
T; dW; )93 vz @
( ZeT, dw oy AT | Bylv;
<=L onlber0)}), (89

It is easy to verify that the coefficient of
Thus, the instability condi-

I(b,) exp(-5,)

for dw~iImw.
dw/w is positive and finite.
tion is

“’*'{1 -5+ FO)I}>1, (89)

and we see that o; does not affect it directly, as (STI/
Tws;/Z <w<w,;, while 1 —=1,;((1/2) + F(b;)] can have
either sign.

For lower values of Z, the “impurity drift mode” dis-
cussed in the previous section is the only one possible
and the relevant instability condition is

z 77;) ( Ti Tt >-1
1+ £tz = <0, (90)
Zeol( Mic n T, eTI
where
we=2/11+2F®)] . (91)

Notice that F(b;) =5, for b;<1 and F(b;) =~} for ,>1, so
that the condition 1 >n,, is more easily satisfied for
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b;>1 than for b; <1.

This instability is reminiscent of the ion drift mode
that is driven by a sufficiently large temperature gradi-
ent since it depends on ion Landau damping and is also
driven by the gradient of the mean longitudinal velocity
that, in the present case, results from a gradient of the
mean ion mass number. Condition {90) indicates that
the relevant mode can be excited for o, positive or neg-
ative depending on the value of ;. For the impurity
drift mode to occur for a main ion temperature gradient
sufficiently small so that 7, <7,., the density gradient of
impurity ions must be in the opposite sense to that of
the main ions and not too large. This could be the case
if the impurity ions were concentrated near the plasma
boundary. On the other hand, for a sufficiently large
main ion temperature gradient, such that n;>7;., the
instability could occur for an impurity ion density gradi-
ent in the same sense as that of the main ions, which
would be the case if the impurity ions were concen-
trated at the plasma center. In these cases | wl<|wyl
and the worst growth, obtained by taking the limiting
value of &, in Eq. (83), is

dlnng/dx

dlnn,/dx ° (92)

Rew~Imw~ Zw,;

Now, we consider the limit
nr~ WPmy/RAT > 1

that is relevant to our discussion of the evolution of the
|

Tin

e

0=

[Io(b)exp( b)I{1 4,1 - F(®)]} + 0,22

In this case Eq. (83) reduces

Wai k3T, )_
Lo, (1 +7; o 0 (93)

impurity density profile.
to

neTi Z

Y,z

and a fluid-like (nonresonant) instability can be found.
Equation (93) has an unstable root if

BT, ( Z 2( neT¢>2]2
> 4
[1 Tl wiiml (Zeol> ! +n!Te 1 ’ (9 )

and we may argue that, as a result, a transport of im-
purities toward the outer region can occur until the im-
purity density gradient has changed sign (meaning

7= Wyy/ wpp <0) and a condition for marginal stability is
reached.

Now, we notice that the plasma may not sustain rela-
tively large impurity density gradients, such as those
predicted by the collisional transport theory, for which
0;~Z. Infact, if

oy gZéeh?il"(bt) = 1}1o(b,) exp(= 5, , (65)

the instability associated with Eq. (94) is of the fluid
type in the sense that it does not involve a wave-particle
resonance and occurs in the limit

v <v;<w/ky<v, ,

for which the dispersion relation is

2
‘+[1 Io(b,) exp(— ;)] + w*‘ 0,—+Io(b,)exp( b1 -n,F(b, )])——(%) (Io(b,)exp(— b,-)+Ze':nn—:

Z. It m‘) i (96)

Z T, m

When the condition (95) is satisfied, the term proportional to 1/w in (96) is zero, and the resulting cubic equation

has an unstable root if

()
k”'U‘

a condition which is satisfied whenever w>k,v;.

o= Uofy) expl= b +1 10 exp(= b)) Ly(b,) expl=b)1(1 40,01 - F(b,)] + 0, 22 74 I} (97)
Z m

my T,

If we take the limit of this condition and omit the term in (96) pro-

portional to 1/w? entirely, we may solve for the frequency w, to obtain

Li(b
wS_—zkuv{w*;{lo(b,)exp(— bf)[1+"7¢<1—b,+b‘ 1( i))]+0

Io(by)

''Z my Ty
Condition (95) requires that o, be of order lo,|~2/Z, if b;S$ 1 and ;S 1.

éﬂ&}(ﬂm

o, 1-1,(b,) exp(-b, ))

On the other hand, if b, > 1, the condition

(95) becomes o;=(Z/Z,)(n,/2 —1)(27b,)"'/2, which can be satisfied for |o,|<Z/Z, although in this case, finite b, cor-
rections should be included. We notice that the signs of ¢; required to satisfy the condition (95) for b, &1 are oppo-
site to those which tend to be produced by collisions (see Sec. VII) for large and small values of 7;.

B. Quasi-linear effects

We consider the quasi-linear particle and thermal
energy transport due to the impurity modes that we have
been considering. For simplicity, we neglect all finite
gyroradius effects. Then, the relevant quasi-linear
equation is

8

-2 2 pkbaint Shbagin,  68)

where we have written f, = f1+ 7,, with £,/f%~e,6/T, <1,
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—
and

1
fjk m(mj "d"‘av fj+ ky¢’ka fj) (99)

We may separate the denominator in (98) into a reso-
nant and a nonresonant part

1 . wo — Ryvy =1y

———w - k"‘U" = - ZTTG(UJ - kuvu) + (wo — k"‘U“)z+‘}’z . (100)

Evidently, for instabilities which are unstable due to the
mode-particle resonance term for the species whose
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diffusion is being calculated, the resonant diffusion term
is dominant when the resonance condition w=4k,v, is met,

and the nonresonant diffusion term otherwise. Integrat-
ing (98) over velocity space, we have

5 o 3

Btnj——B axZZZky(b-kn]k axr (101)
and

9 c 0 . S _

a_tW?j = E 3_ Zk:zlky¢-kwljk: a‘h: ) (102)

where W2, =[d*vim? fS, W, n=[dvimp? fy.

Now, we recall the quasi-neutrality condition (19) and
derive

I, =-(1/2)r, (103)

from the expression for I';. Then, we obtain
an/z eqbk ( w >
r;= 1-2n,—— 104
P v B‘Z T, 2Ik..| on)r (04

where 7,; = — (d1nn, /dx)™ and

Dg,=cT;/eB . (105)
Therefore, the impurity flux is outgoing if

17,2201 —w/wy,) , (106)
and I'; will go to zero if

Ze T
1-3m;+ 3 0,<1+T:> =0, (107)

taking for w the impurity drift mode root. In the case of
the impurity sound mode, the instability condition re-
quires

Dxi(y _MiYs
w(l 2) 1.

Then, if n,>2, the relevant root of the dispersion rela-
tion corresponds to w,,/w <0 that implies outgoing im-
purity flux, on the basis of Eq. (104).

(108)

Next, we turn to the question of main ion thermal en-
ergy transport. The expression for W,; corresponding
to (82) is

T ol . 1/2__ & _ Wi 1
W= e¢ni[1+zvr Ik“lv,(l m (1+2n‘)>], (109)

and thus

2 2
edx|* _Hipy (1+ﬂi_L>,
2n, | &yl 2 wyy

i
(110)
Then, we see that the ion
If we define an im-

("4
i

where 75, = — (dInT,/dx)™.
heat transport is always outward.
purity “diffusion” coefficient

r r
D,E—"r,,=—£< '1’") ;

111
ny Z,\ny; (111)

where 7,;~ ¥,; =7,, and an ion thermal diffusion coeffi-
cient

DTi=(qJ.i/"¢Ti)7Ti ’ (112)
we can see that
D,~(Z/Ze)DT, . (113)
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Therefore, the rate of change of n, can be expected to
be faster than that of either »n; or T, and, as indicated
in Sec, III, the evolution of o, will be such as to
stabilize the various impurity modes, with 7, little af-
fected on the relevant time scale.

We may summarize the evolution of the equilibrium
on the basis of the results that have been presented so
far as follows. For typical collisional equilibria (see
Sec. VII), if it happens that the impurity ions become
concentrated at the center of the plasma, with ,21, the
impurity drift mode can be unstable for n,~1, and serve
to earry impurities outward (and main ions inward) un-
til o;~ 0 and this mode is stabilized. At this point the
impurity (sound) mode that is driven by a temperature
gradient of this population and is described by Eq. (93),
will continue to carry impurities outward against the
developing positive impurity density gradient, until it
becomes stable for ¢,~ -1. Thus, we may envision a
stationary state in which

nic<ni <Tlc s

7. indicating the critical temperature gradient below
which the collisional transport of impurities is inward
(see Sec. VII), and the impurity temperature gradient
driven instability is excited with such an amplitude as

to produce an outward flow of impurities that exactly
compensates the one due to collisions. At this point we
will be left with the impurities concentrated at the out-
side of the plasma. We denote this process! as “impuri-
ty decontamination,” and we expect that the value of 7,
should not change appreciably during this process.

Finally, we may anticipate a comparison of these
modes with the longer-parallel wavelength standing
modes which will be investigated in Sec. V. The criti-
cal value 7,,, for which the sign of g, corresponding to
instability of impurity drift modes changes, has values
for n,. approximately equal to 1 to 2 for the short-wave-
length traveling modes and for n;, approximately equal
to % to 1 for the standing modes. Requiring n;=1;,, the
latter range is the more realistic of the two, and, in ad-
dition, the typical values of the transverse wavelengths
that correspond to the lower values of n;, are larger in
the case of toroidal standing modes. Also, the basic
impurity drift and impurity sound instabilities as found
in this section for 7, $1 are dependent on wave-particle
resonances involving a small region of velocity space,
whereas the corresponding instabilities in Sec. V can
be nonresonant. We therefore expect the latter to have
stronger effects.

V. COLLISIONLESS TRAPPED PARTICLE MODES

A. General dispersion relation

In this section we shall consider collisionless modes
which can be excited in a two-dimensional confinement
configuration such as an axisymmetric torus due to the
presence of impurity ions. %% The effects of collisions
on the relevant modes will be considered in Sec. VI.
When referring to an axisyminetric toroidal configura-
tion, ¢ and 6 denote, respectively, the toroidal and po-
loidal angular coordinates, ¥ is the minor radius for a
given magnetic surface, and R, is the radius of the mag-
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netic axis. The magnetic field is represented by
B=[Bye,+B)(r)e,]/n(6), where h(6)=1+¢€,cos6, and we
consider €,=7/Ry< 1. For simplicity, we have as-
sumed that the magnetic surfaces are concentric and
have circular cross section. The inverse rationalized
rotational transform is then q(r) =vB,/RoBj~dt/

A6 41610 14nes SO that L =2nqR, and AB/B=2¢,. As co-
ordinates in velocity space we shall use either v, and
v,, the velocity components parallel and perpendicular
to the magnetic field, or the kinetic energy €= (3)m,(v?
+v?), the magnetic moment p = (3)m;v%/B, and the di-
mensionless pitch angle variable A =uB,/e. We assume
that no electric field exists in the equilibrium and note
that trapped particles correspond to 1 —€;=A =1+¢,
while circulating particles correspond to 0<A <1-e¢g.
We define the bounce period r,_zf 0 dG/l 6| and the
bounce frequency wy(e,A)=21/7, for trapped particles,
where 6=¢/q~v,/(qRy) and =+ arccos[(A - 1)/¢,)
correspond to the orbit turning points. Likewise, we
define the transit period 7, = f,de/é and the transit fre-
quency w,(€,A)=27/7, for circulating particles. The
relevant averages over a Maxwellian distribution are
(w)y ==,/ (gRo) and (wy); = (€¢/2)2 W,y << Wy

For the types of modes we shall consider, the per-
turbed electrostatic potential may be represented as!'®

& = §0,,0(6, S) exp{—iwt +in%[¢ - g(+)6]+iS(r)F(6)}

(114)
in the neighborhood of a rational surface » =7, where
J;mo,,,o(e, S) is periodic in & with period 27, while F(6) is
monotonic in 8 so that F(8) = [946’ G(6'), G(8) also being
periodic and even around 6 =0, with F(0+27)=F(6) + 27.
The surface 7 =, is such that g(ry) =m%/n’=¢,, m°and
n° being integers, and we have defined the radial vari-
able S(r) =n°[g(r) — gol. Thus, ¢,(6)=@n0,40(6, 0) repre-
sents the mode amplitude modulation along a given mag-
netic field line for » =v,.

The collisionless impurity modes that we shall con-
sider are of the odd type, as (13,,,(6) is odd in @ around
6 =0, and have frequencies such that

<wg>1 <w <<wb>i <« (wb>e (115)

These modes are standing along the magnetic field lines
and have ¢, (6 =+7)=0. In this case, we may choose
G(8)~2r8(6+7), so that F(6) ~0 for trapped particles.
In addition, &,0,,0(6,5) is taken, as a function of » — 7,
to be localized over a distance Ay <y, which we take to
be related to the scale distances 7,,=~ (d1nn,/dr»)™ and
Yr;=— (d lnTj/dr)'l. Since we consider relatively large
values of m? such that the spacing between mode-ra-
tional surfaces Ay = (n’dg/dv)™ <7~ ¥pj, Bmo,nol6,S)
can be taken as a nearly periodic function in » with pe-
riod Ay <Ay, or in S with period one, as can be veri-
fied a poste'riom'. Thus, we refer to the interval
-3<=S=3 z and notice that for the modes of interest
(Ar,)2>pl;, p,; being the average width of a trapped
main ion banana orbit (p,; ~ €¥2p,B/B,).

The equilibrium particle distribution functions are
assumed to be of the form £9= f,,(»)[1+ f,], where

(116)

Fusr) = Tﬂ%exp[ e/T,m)],
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and

s v [dlnn, _dlnT,(g_i)]
fi= Q, L dr dr \2 T,/)
For odd modes in the frequency range (115), the per-
turbed electron density amplitude is given by

(117)

fon= 207,
= jd% flexpl+iwt —in%lt — q(r)8] - iS()F(6)}

=%$m0,n0(9’ S), (118)
e

where f} is the perturbed particle distribution function.

Correspondingly, the fluid approximation” may be

adopted for the impurity ions. Thus we have, from the

particle conservation equation,

- 1
_iwn,m+z <i>mo 20(6, S) + ’le( u,,,,") 0, (119)

(,B

and, from momentum conservation along the magnetic
field,

—iwm Ny, =~ eZn,Bilémo,no(B, S) -n, 87;;.’” ,  (120)
and, from the energy balance equation,
_sz,mH ¢>,,,o o6, s)dT’ (121)
Thus
= (22T B () L 15006,
(122)

where w,;=—-ncT(dnn,/dv)/(eRoBY) = - m°cT,(d1Inn,/
dr)/(eroBg) and wgpy==m’c(dT,/dv)/(er,B,). We have
defined 8/381=(B-V)/B=(qR)"[(8/86) +iSG(p)], when
operating on functions whose spatial dependence is of
the form (114). For the choice G(8) =275(6+ 7) that we
have made, this is (8/81) =(qRy)"'(8/96).

In order to obtain the perturbed main ion density am-
plitude it is convenient to employ the decompositions'®

0, 2006, ) = ; & (A, 5) explipw,? (6)] (123)
for trapped particles, and
B 0,206, S) expliS[F(6) - w, F(0)]}
= ,Z (A, S) explipw,F(0)]  (124)
for circulating particles, where
£(0) =qRoJ: d8/v,(8) +const , (125)

and we neglect all finite gyroradius and finite banana-
width effects, as well as the effects of magnetic curva-
ture drifts. We shall employ corresponding decomposi-
tions for the perturbed distribution function amplitude

£:(6,8,v) = f} exp{+iwt —in®l¢ - q(»)0] - iS(r)F(8)}

=Z FA, €, 8) explipw,f (6)] (126)
?
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for trapped particles, and
F:(8,8,v) exp{iSIF(6) - w, i (6)]}

=2 7P, €, S explipw,f ()] (127)
»

for circulating particles. All of these summations are

over all integer values of p.

For the modes under consideration, we may adopt the
guiding center approximation, so that the relevant ki~
netic equation is!

atf:+vii uf; Bz(ExB) f§+ E”av fO_:o’

(128)
and, from this, we obtain

(- iw+7}uvu)f} = "‘Ig'fui[vuvu —iwzi(f)]‘i ) (129)
i

where wl;(€)=w,y;[1=1,G —€/T))], wy;=—-mT,(dInn;/

ar)/(er By = = n’cT(d Inn;/dr)/(eR,By), and n;=(dInT,/

dr)/(dnn,/dr).

Therefore, if we introduce the decompositions {123),
(124), (126), and (127), we obtain
w:;(f)]‘i’(p)

(miw+ipw) FiP = =i 7 fil pw, = (131)

for trapped particles, and

[—iw+i(p+S)w,]f¥ = -i%fm[(p+s)wt - wl ()8

(132)

for circulating particles. Thus,

fi =_7§_fMi Z ' eXp[iP“’bZ(e)]pwb Oy (133)
1 ;]

—pwy

for trapped particles. Writing pw, — wl, = - (w - pw,)
+(w - w];) and using (123) this is

= _ e - _S i .7 (6)] L= @xil€)
fi=— T, fMi(d)mU,nD(e’ S) ; &' explipw,t (9)]0.)——;;; )
(134)

Similarly, using (128), we have for circulating particles

}i = _%f}li(d.;mo,no(es S) - ; (‘I;(P) exphpwtz(e)]

We note that . - w— wI;(e) )
P - 6) - g} ==l )
., exp{-iS[F(6) - w,i( )]}w—(p+s)w, (135)
UV = gﬁza_f : (130) Now, we consider the quadratic form
|
27TqR0<<¢m0,n0(9 SVtym? = qRof df h(G)J ds ({’:O,no(e, 8)tim
1/2

1/2

{2 >2 J‘@ J'l-i-eo J
=== de e dA
2 (m, ; 0 0 -1/2

]

1 -
as | d6——dho,.0(6,9)f;
-89 | 61

% 2 1/2 o _ .
=— [qu d@h(9)£1/2d8|¢mu',,o(9 S)| Zn‘(m‘) 2 _l/zdeU de efylw - wi ()]

AT 194, 9)12
bz W — pw,

“(fe

=¢g

where o=sgn(v,), 6,=7 for circulating particles, and §y=arccos|[(A —1)/¢,] for trapped particles.

In the limit w<{w,); we may expand the resonant denominators in (136).

1 1
©—pwy (pwb pzw%”"a(“’ b “’”)>

and, noting that w,(A, €) =(€/T,)20,(A) = X&,(A),

1 w
8w = po) =512 Ry 6<X-P<:;,(A)) )

Similar results hold for the circulating particies.

trapped particles, we see that & =0 for odd modes and | ®*’|2 is even in the sign of p. Similarly,
Using all of these results, the quadratic form (136) may be ex-

even in the sign o of », for circulating particles.
pressed as

=€ 1894, s)iz)]
+L dA | tl}: o, (136)
For trapped particles
(137)
(138)

From the expression for 52”(1\, S) obtained from {(123) for

1A, 9)12 is

e”i - wlws(l=n) - w]a _ [w*¢(1 - zTIt) - w] ) 139)
qR < (13, Ped’ 1, w3€, 2/ (
where
. T 1/2 -
nozf ae h(e)f dS | b mo,no6,8)| 2, (140)
-1 -1/2
R 1/2 Leeg
nleeglf ds (2f dA L (A)Z 1390, 5)|2/p? +—[ dA L3(0) Z 19, s)l“’/(p+s)2) (141)
-1/2 1-¢p p=1 p=—w
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I,= ey
-1/2 -€Q

PR
L@)=cy [ " aol1-a/m(e)) 1",
-0g()

and

L) -et [ aol1-n /@) .

All of the 1’s are real, positive definite quantities of
zeroth order in €; and in w/{w,),.

Collecting our results (118), (122), and (139), and
taking w<w,,, as can be justified a posteriori, we may
write the quadratic form of the quasi-neutrality condi-
tion

(B m0,n0(0; S)(Fiypm + Zip = Tigm)) =0 (145)

as

(ﬁ+m)_
Te ne

ng (w(w*‘ - wry) J
- 1722 1
N € Wy

-2
Zzﬂﬂﬂ _Yry J. +Zﬂﬂ
n, m, 2w Zw]" ¥ T n
e I e

9 3
+1: (5] (w*(_sz wT‘) J2)=0 s (146)
€qW; ¢

where Wy EN;Wyyy Jl =ﬁ1/(7r2ﬁ0)’ Jz =ﬁ2/(775/2ﬁ0)’ and

1/2

T 9 - 2
Iy = f “aon(®) [ as '6—9%0,,,0(9,3)‘

-1/2
v 1/2 . -1

x( f a6 h(9) f 4B, s)lz) : (147)
- -1/2

All of the J’s are real, dimensionless, positive quanti-

ties of order one.

In deriving (146), we have neglected the effects of
magnetic-curvature drifts for the main ions and impuri-
ty ions. Including this effect for the impurity ions leads
to the additional term!?

n Wpp oy _@wr Ty )
Zne w J5<1 w ZT,(1+17’) ’

where Wy, = wy  (7,,/7)€, and

T 1/2 .
Js=2 j d6 h(6) cosé f dS | B o, o6, ) |2
-7 -1/2

-1

X (f do h(8) f_ij:ds lémo..,o(e,S)P)

Here, we have integrated over the impurity distribution
function the magnetic-curvature drift frequency wy,
=(m%/rovp;Z, where vy, is the poloidal component of
the magnetic-curvature drift velocity. It may be seen
that this term is of higher order in €, than the third
term in (146), and may be neglected. The effect of
main ion magnetic-curvature drifts is even less impor-
tant.

B. Special cases and mode classification

Equation (146) is the general quadratic form for odd
modes in the frequency range (115). When the impurity
temperature gradient is small enough to neglect, it is a

1155 Phys. Fluids, Vol. 19, No. 8, August 1976

1/2 146 2. 1-¢ ke -
ds (zj' ‘A )Y, |«1>"’(A,s)|2/p3+%3-f *an I5INDY |(I>"’(A,S)|z/|p+sl3) ,
1 =1 0

(142)

pe=m

(143)

(144)

|

fourth order polynomial in w; of the four roots, usually
at most one has both Imw>0 and | w| <{w,);. When the
parameters are such that the impurity sound term in Jj
is one of the dominant terms in (146) for this root, we
label it an impurity sound mode, otherwise, it is labeled
an impurity (trapped particle) mode. When the relative
impurity temperature gradient is large compared with
the relative impurity density gradient, an impurity tem-
perature gradient mode form of the impurity sound
mode can arise due to the impurity sound temperature
gradient term, with frequency w = {(w,),- All of these
modes are nonresonant, in that they can be unstable
even without consideration of the mode-~particle reso-
nance term indJ,. Later in this section, we shall repeat
the consideration of these modes several times in suc-
cessivley more comprehensive fashion.

All of the modes mentioned so far have a perturbed
electrostatic potential which is odd about the point of
minimum magnetic field. For even modes, the corre-
sponding quadratic form would contain important addi-
tional terms. In the present collisionless limit, there
are no significant even modes which arise specifically
because of the presence of impurities. Including the
relevant terms due to collisions, however, new modes
can arise due to impurities, and modifications can be
caused by impurities in modes which would be unstable
even without impurities. These modes will be dis-
cussed more specifically in Sec. VI.

We now want to consider various special cases for the
quadratic form (146) before treating it more generally.
We first consider the case where the main ion and the
impurity ion temperature gradients are negligible. We
take ww,;~ w?el? and T;~T,. Equation (146) becomes

(& Y _
Te+ne

=2
n; Wy Wiy np Wyr
—_— J3+Z—

“n, my 2w? n, W
7y W@ | W g w?
-t GF= Ji+i—=5-dJ,)=0. (148)
N, \€p "Wy €Wy

Now, we can refer to (148) in order to find conditions
under which unstable modes can be found. We identify
two types which can be unstable with Imw =y 2 Rew = wy,
and which therefore do not require consideration of the
term in J,. One kind of mode corresponds to the case
where the terms in J, and J, are largest within (148),
and does not depend on the relative sign of the impurity
ion density gradient versus that of the main ion density
gradient. We can consider this as the trapped particle
version of the impurity sound mode. In particular, the
condition that the second term in (148) dominate the
first term, along with (115), requires that
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z, z( > L L2, . (149)
Then, we obtain
L el/ea
Wz, T W Iy (150)

mp Wy 2y

Finally, the requirement w<{w,), implies that

mi \— ( J
o> (i )oul)

and this sets a lower limit on the values of m° and (r,,/
rom,Z,/m)/qq that can be consistently considered.

Now, if we consider a situation where the impurity
sound term can be neglected in Eq. (148), such as when
Z,~1, and retain the lowest order terms in w/{(w,);, we
have a quadratic equation whose solutions are, for
n; =1,

1/2‘— 1/2
Ty Z Wy Wi
___L Le
T 2wy {(T *1)*[(1‘ *1) A e(‘,;zwf, ] } :
(151)

Then, we have a nonresonant instability, since it does
not depend on the term inJ,, if

Zogy e 0, ) (2

A 8b;J, T,/ \qR,
where b, =3(m°/7)%p? and p; =v;/Q,, implying that, in
this case, impurity ions and main ions should have op-
posite density gradients, as can be realized when the
impurity ions are concentrated in the outer region of the
plasma column. When the inequality (152) is not satis-
fied and wy =~ (Z,/Z)w,; /(1 +T,/T,), we have the im-

purity drift mode whose (resonant) growth rate is given
by

(152)

J2

3
5, s T/T) (153)

Y=WyiT3

and is positive for o, <0.

It is important to consider the effects of the ion tem-
perature gradient, and for this we refer to Eq. (146).
The equivalent of Eq. (151) is

P (1+35)- [(M*) cale
2w (1 =M, T, T, z
Wy Wt 1/2
x =t Hl-n)| ¢, (154)
€ "Wy
and the condition for nonresonant instability is now

1)> —*L—(1 Zi) (7"‘ o
8o\ TT,) \qr

When this condition is not satisfied and instead we ob-
tain the usual frequency of the impurity drift mode, the
growth rate y is given by, instead of Eq. (153),

gz'e'(’t(ﬂi (155)

=w ( fves )303(3 _1)__—Jz
VRN G,ZzA+T,/Ty)) T T Ve AT, /T

(156)
Therefore, we obtain instability even with o,>0 if only

2
T’(>§,

which is an easy condition to satisfy in realistic situa-
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tions. When the condition (155) for a nonresonant in-
stability is satisfied, and

Z 1/2_
w~(—Z-€},/2o,J1) Deq (157)
we require
mi€_11,_<_é_o[<€1/z (158)

for consistency with the assumed frequency range (115).

In order to investigate the regions in parameter space
corresponding to the instability with w <<w,,), more fully,
the fifth-order polynomial equation in w, (146), has
been solved numerically. For the sake of definiteness
we have chosen the illustrative values J, =J, =J;=1,
T,/T,=0.5, €,=0.01, and m;/m;=Z. We note that,
from the neutrality condition, we have Zn,/ne =1- (ni/
n,), so that 0=(Zn;/n,)=<1. In general, it is seen from
the numerical solutions of Eq. (146) that, for small
concentrations of impurities, the conditions for accept-
able instability are less stringent than would be sug-
gested by the special cases treated earlier, and, for
larger concentrations of impurities, that the same con-
ditions on the relative directions of the main ion and
impurity ion density gradients apply as were deduced
for small concentrations of impurities.

If an impurity ion temperature gradient were in-
cluded with 5, =(d InT;/d¥)/{d Inn;/dr)>1, then an in-
stability with {w,); S w <{w,); <{w,), could occur, with
the main ions and electrons responding adiabatically.
This is analogous to the instability found in the frequen-
cy range (w,), $ w <{w,), with 7,>1 in the absence of im-
purities. For this mode the J, and J, terms in (146)
may be neglected. The resulting cubic equation in w
always has one unstable root. The simplest form of
this root is seen by keeping only the first, second, and
fourth terms in (146), so that

-1
np mi — T‘ nyg
-Z = w“w“(T +—>
I

(159)
n, 2my n,

We label this as the impurity temperature gradient
sound mode, or as the impurity temperature gradient
mode, since it is, in fact, an extension of the impurity
sound mode discussed previously. We also recall from
Sec. IV that this mode can play an important role in the
evolution from o; positive to negative.

C. Quasi-linear estimates

We notice that i, and ¢,,.0(6,S) are in phase, as
indicated by (118). Therefore, no net transport of elec-
trons across the magnetic field is found to be produced
by these modes when the evolution of the average dis-
tribution function is estimated by the well-known quasi-
linear theory. On the basis of the same theory, we also
expect that a rearrangement of the impurity and main
ion spatial distributions, as well as transport of ion
thermal energy, across the magnetic field does result.
Since quasi-linear theory is not entirely appropriate for
dealing with nonresonant instabilities, such as the ones
that we have found, we shall merely use it for reason-
able estimates of the produced transport.

Coppi, Rewoldt, and Schep 1156

Downloaded 19 Mar 2007 to 198.125.161.163. Redistribution subject to AIP license or copyright, see http:/pof.aip.org/pof/copyright.jsp



In order to estimate the impurity particle flux that
can result from these modes, as well as the evolution

of the relevant equilibrium, we consider the quasi-linear

equation for the main ion density evolution as we did in
Sec. IV.

i —n,+{V* @Fenj+c.c.))=0, (160)

ot
where Vg = — ¢V® x B/B? and n} =#,,, exp{~ iwt +in%[¢
-q(r)8]+iS(»)F(6)}. Now, it is easy to see that
(V- (@gni+c.c.))) =(3/87X{vg n} + c.c.)), where the ra-
dial derivative is taken over a scale longer than Ay,.
The resulting main ion flux is then

oo (5 m(2)-

m0 ¥

(161)

Similarly, we may consider the quasi-linear main ion
thermal energy transport across the magnetic field due
to these modes. To estimate this we evaluate

—a-W“+((V- FxW. +c.c.))=0

57 - (162)

for the main ions, where W,;=(m;/2)[d*v+} f{ and
W.oi=(m,/2) [dvi? fL. We see that (V+ Bz W,;+c.c.))
=(8/9vX(¥g,W,;+c.c.)), as before. The resulting heat
flux is
0 - -
g1=22_ 22| 8|2 Im(W, ,/3))) . (163)
m0 v & ‘BO
Now, as in Sec. IV, we may recall the quasi-neutral-
ity condition (145) and obtain

r,=-(1/2)r, (164)
from
2 e |2, 4Ry
I —mni T ko, 5
x{ = | (W = YD1 = $n,) - (03— 372) &
wtiEO 0 2 0 w*l'
+ =t (1-m -2 -2 (165)
wyi€g o T |

where Dg; =cT;/(eB,) and w =wy+iy. Evidently, both
terms in (165) will contribute to the resonant instabili-
ties and the second term will dominate for nonresonant
instabilities,

Taking the root corresponding to the resonant im-
purity drift mode (156) for w, so that w3>7% we find
that the impurity flux is outgoing if

|
ed |2 k¥2p, qR {
= Zelh 4% ___1.172. 1
i Ty T; m 2 |wyey < Wiy

where J1{=2i1}/(n?fl,), J4=2fi}/(n%201,), and 7,

= - (dlnTi/dr)‘1 The second term in (173) will be neg-
ligible for w<(wp);. Thus, since w,<wx; for the modes
under consideration, we see that the ion heat transport
is always outward. If we define an impurity “diffusion”
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14
_2 _‘20_>+ Ji,
Wei€o

wiJ, Z ]
1- - —Hz-_ 1-2—=2
[( w*i) W€y - Z,0p ( 2 w*t)

3 wig, Z \!
X(Z - 6“50 Zeo,> ‘
When [(w/(ws);)%€}?2/(Z,0,)]<1 and wy<ws;, this con-

dition reduces to 7; >%. The impurity flux I'; will go to
zero if

Z T, \* wiJ,
_3p o Ze A - =%
[1 2l + ZGI(I+Te) ] Wi€g

Z Z T, \*
- 2 ZLe =t X =0,
Zeo,[l e+ Z"’(“T.,) ] 0

For the nonresonant form (164) of the impurity drift
mode, the impurity flux is outgoing if

(166)

(167)

0>1-m - (168)

_«”®
2J,(1 ~ ;)b (qRo> ’
and I'; will vanish if the quantity on the right-hand side
of (168) equals zero. In the case of the (nonresonant)
impurity sound mode (150), the impurity flux is positive
if

(169)
Turning to the question of the transport of main ion

thermal energy, the resuilt for ﬁ’u corresponding to
(139) for n; is

ZTT‘IRo((a)mO,nU(Q, S)I’i’u» =- eniqRo(Ho ((Tw:')'z'a]n‘ H'
T T Wei€g
where (170)
N (12 Legg . . 2 )a
n;segf ds[zf dALAMA Y |39, 9)[2/p
/2 1eeg =

1 (=0 3 S &P 2 2
+ZJ(-) dALY(MA Y |94, S)| /(p+s)], (171)

b=

and

R 12 Leeg
fiy= et [ ds[z [anr (A)AZI‘I’"’(A 9)|2/p°
- 1=¢Q

1/2

1 1'60 d -
*33 ), dA LYAA Y |2 (A, s)|2/|p+sl5] . (172)

pamio

Then, the expression (163) for the mam ion thermal en-
ergy flux becomes

[(t-87%03+ 700 - 31 - 08~ :
i

(173)

1072w +57*) w—“’l]} ,

r
coefficient and an ion thermal diffusion coefficient as in

Sec. IV, we can See that again
D ~(Z/Z,)Dyp; . (174)

Thus, the rate of change of »n, can be expected to be
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faster than that of either n; or T;, as for the modes
discussed in Sec. IV. We therefore again expect that
the evolution of o, will be such as to stabilize the vari-
ous impurity modes, with 5; little affected on the rele-
vant time scale.

VI, COLLISIONAL KINETIC MODES

In this section, we consider the effects of collisions
which were neglected in Sec, V. We refer to the fre-
quency range

(wpr<w<vy/€<wy)i<{wy), » (175)
where we assume that
Vir 2 Vi (176)

We consider modes with cﬁm(a) odd and notice that, from
the results in Sec. V,

- en, -
em=_T'g ¢m0,"0(9,s) 3 (177)
e
and
~ en
My ——T—’ G0, 0(6,5) , (178)
i
if we maintain the ordering
722~ T~Ti<T,, 2az>1, (179)
n, ~ w
If instead we can have the ordering
1<zl <—-l € » (180)

ng My
and consider
Q‘i‘z (181)

Zw s m, 2w

the impurity sound term should also be retained, as in
Eq. (122).

Now, we consider modes for which
]

qRof_:doh(e)f_i:dstif,.o,,,u(e,s)ﬁm? [qRof d‘”‘(")f 251 60,00 SHZ_JL( )me

f deefyfw- w*i(e)]f

»

where 8, is a positive constant of order €, We have taken v,, ~

AJZ

W+iVe{€) ~ puw,

1-60'60
A
+j; d |T‘| Zp:w+iV¢1(T¢/€)3/z'(P+s)“’c

of,
at N7 < 5t) (182)
the effects of finite main ion gyroradii, banana widths,
and magnetic curvature drifts can be neglected, and the
guiding center approximation can be adopted, as in Sec.
V. We also consider a simplified collision operator
representing the pitch angle scattering of both trapped
and barely circulating particles, so that

) v (7 ) (189)
SO
where

uez(€)=£€“:(%)3/2 , (184)

and we have corrected the collision term for the Max-
wellian part of f‘. As shall be seen a posteriori, the
most important collisional contribution to the mode
growth rate is, in fact, due to trapped and weakly cir-
culating ions. For this case the relevant kinetic equa-
tion becomes, instead of (128),

af‘

Y +vn ufi“'_'z' (E"B)"—fi+

"31} fﬂ

e
:"Vef(d(f}‘*'T—qs fm) (185)
i
and, from this, we obtain

[“' fw+ Vet(€)+ vuvn] f} == (e/Ti) Sui [‘I),,V" - iw:;(f)*’ V.{] 5 .

(186)
Again introducing the decompositions (123), (124), (1286),
and (127), we obtain

[-iw+vel€)+ipw,] fm

== i(e/T)) fus[pwy — wl(€) = iv,,] 5@ (187)
for trapped ions, and
[=iw+v,(€)+i(p+Sw] FiP
=-ie/T) fu;[(p+S)w; - wfi(d-ive:]‘i’(” (188)

for circulating particles. Thus, for the present case
the quadratic form (136) changes to

~-1/2

| &P(A, S)12

a(b)(A S)IZ fl 0
dA | T -
* 1-64=6g |7l Z,: @+ Vg (€) = (p+Sw,

LW TN P

vi/€ for A>1—¢;— 8y and v, ~v;; for A<l -¢

- 8y. In the limit (v,;/€) <(w,); we may perform the energy integration by expanding the denominators in (189)
separately for 0= X=(€/T,)"2< [v.1/(€p@,(A))]*/* and for [v,,/(€p&,(A))]/*< X, recalling that w,(€, A)= 3,(A) X
and that v (€)= (vi/€) X -4 for trapped particles. Analogous expressions apply for circulating partlcles. Thus, the
quadratic form (139) becomes, including the leading collisional correction term for odd modes, 1

Wwxyll = w w*€[1—2ﬂ11
Ry Iy =
q °[ 0 (rw ) €g W€

where
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Vi /2 ‘| 1- ag,]
( o) (77(0:4)3/251“ H‘] ’

(190)
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().

f1/z
=1/% ~€q
and the rest of the 1I’s are defined in Sec. V.

Referring to the ordering given by (175) and (182),
and collecting the results (177), (178), and (190), we
see that the important terms in the quadratic form of
the quasi-neutrality condition (19) are now!®

1/2
(21 +—‘-)Ho Lxr gy +z(—l-}-u-)
T, n, ne w €
Wx
x(3n,- 1) 2t TP =

from which we derive the real frequency

-1
(T ﬂ)
==2Z —
W Wher 7, (Te + 7, ’

(192)

(193)
and the growth rate
1/2
nyn v
y=Z "‘L'ZJ' Wiy w*{(% N — 1)(—“)
Ne 60

(mwg, P %€y (T/T,+ni/n ) Ty °

(194)

We see that if 9, >%, the relevant instability is ex-
cited for (dlnn,/dr)/{d1nn,/dr) >0, such as in the case
where impurities may be concentrated at the center of
the plasma column. Thus, we may argue that, for 7,
>2. this instability should lead to a redistribution of the
impurity concentration toward the outer edge of the
plasma column. Clearly, a configuration in which 7,
>2 and impurities are concentrated around the surface
of the plasma column is stable to the considered type of
mode,

We note that the impurity sound term obtained in Sec.
V can be included in this analysis. The quadratic form
{192) becomes, neglecting the impurity ion temperature
gradient,

T, n ny my; Wi ny W
4 O\_p2 0 g i i Qs 7 4
(Te+ne> z 1, My 2w5J3+Zne w
V2 n o
+i Em~-10)~ =5l =0, (195)
€ ne Wi €

where J, = I1,/(x 3/ %i1,).
taking wy >,

=1
RO Ty
“0>Z 2, ”*’(Te e

g - 1/2
X{—li[l+2(T -’ii)ﬁt—“’—‘f--’l“i.fs] } (196)
e 3

From this expression we obtain,

and
1/2
Y= (—V-“) 3,
€

wiy,
X'——SS—L7—
o,w“a(é ¢ (1

In order to examine a limit in which these results sim-~
plify, we require that the last term in (196) be small

- 2y
1) n]Z

Z-—i w%i

Js) . (197)
My Woly s
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dAlea(A)E ,@(P)(A S)lZ/pS/Z 5517-2'[

- -
€q dA L3/%(A) Z |5"’(A,S)|2/|p+8|3’2) ,

1-€=bg p==
(191)
!
compared with one, which requires that
z o (198)

n, My

then the two roots for w, are given approximately by
(193) and by

"'Z_‘L‘—LJ:;-

20y, (199)

For the root (193), the last factor in (197) is positive
definite, so that the instability conditions are just those
discussed previously. For the root (199), the last fac-
tor in (197) is negative definite, so that the instability
condition is the complement of the one for (193). Thus,
one of the two roots is always unstable, as long as the
condition (198) is satisfied.

The impurity modes considered so far in this section
are all odd modes. Even modes, such as the ones de-
scribed in Ref. 12, can also arise specifically because
of the presence of impurities in appropriate collision-
ality regimes. Furthermore, the presence of impuri-
ties can modify modes which would be unstable in the
absence of impurities. The effect can be either stabi-
lizing or destabilizing, depending on the circumstances,
as discussed in Refs. 12, 13, and 10.

This effect of impurities is illustrated by the dissipa-
tive trapped ion mode,® which is even and requires

(%;.)<w<(wb);, (g:)<<w.,>eo

Including the p=0 terms for trapped particles in proper
fashion, the dominant terms in the quadratic form are*’

(200)

0= (1+%—€)n =t /21, +Z By Qs

ey

-Z(ﬂ)_’tﬁi (1-3n) &’ (%5/_2)

€

! 411,
_Z_*z7.0_(1+2 o ( 1/3)’ (201)
where
. 1 1/2 l+eg -
fly=—— f ds dA L(A)[8%A,S)|[2 . (202)
2€y J.1/2 1-€q

This quadratic form may be solved approximately to
yield

W /2 dn,/d'r)
“ =T/ + T, T‘)( Ti - )
and
4/q1/2
y
dn;/dr ii
-1/2 @y
(12 G 39)
Q n 3 _ ]
[(V /(0) n (1+2ne)+ ( 0)(2 un . (204)
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Thus, we see that when the impurity density gradient is
of contrary sign to that of the main ion population, the
dissipative trapped ion mode is stabilized if

2 wicidan
>2 200 “Te (143
N4 3 Vv, ni( +277e)’ (205)
and
f e
oy <= Ti £ Z (206)

0 Ze

or if both inequalities are reversed. Condition (2086) is
somewhat extreme and is unlikely to be satisfied. It is,
in fact, reasonable to assume that the contribution of
impurities in the expression (204) of the growth rate is
negligible under a variety of realistic conditions. *

VIl. COLLISIONAL EQUILIBRIA WITH IMPURITIES

In order to assess the effects of the anomalous par-
ticle and thermal energy transport due to impurity
modes, it is important to recall the dependence of the
collisional impurity flux on the density and temperature
gradients of the ion species involved. The correspond-
ing equilibrium density profiles are essentially deter-
mined by the requirement that the impurity flux vanish,
at least to lowest order in (m,/m,)’%. To illustrate the
procedures involved, we consider the regime in which
both the main ions and impurity ions are collision dom-
inated, and at first, we refer only to the case of one-
dimensional geometry, ignoring toroidal effects. The
stationary forms of the transverse momentum conser-
vation equations are’

0==V.p; +en(E+clu;x B), —ymn(w —up),  (207)
for the main ions, and
0==V.p,+ Zen,(E + ¢ty x B), + v, pmymy (w; — ), (208)

for the impurity ions., Then we have, recalling that we
consider the limit Q,/v;; > 1,

1 B
u“'—eB< Vbi - VP’) B

(e ) o

my
The collisional transport of impurities is directed to-
ward the center of the plasma column if
Ly 1 odpy
n; dr Zn, dr ?
a situation that is realized, for instance, when impuri-
ties are concentrated at the outer edge of the plasma

column., The characteristic time scale for this process
is
o~ 2% Tatfur 1 (210)

n; Py Vi

where a is the plasma column radius and p; is the ion
gyroradius, and is typically much longer than the
growth times of the impurity driven modes discussed in
Secs. IV, V, and VI. For the collision-dominated im-
purity modes of Sec. III this may or may not be true.
The relevant flow vanishes when impurities have suf-
ficiently accumulated at the center of the plasma col-
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umn so that

dlnn,/dr T dInT,/dr
= gii -
T dlnn, /dr z T,(1+n‘) dlnn;/dr *

Referring to toroidal confinement configurations, the
collisional transport depends on the relative value of
the effective collision frequency of trapped ions to their
bounce frequency. In particular, three regimes have
been analyzed® %1%

(211)

(@) vi/€g>(wp)i, Vi/€0>(wo)y s (212)
(0) vi/eg<{wp)i, Vi/€a<{(wp)r, (213)
(€) vi/eg<{wa)i, Vi/€o>{wp)r - (214)

In the latter two cases the condition for vanishing im-
purity flux acquires a new term in comparison to (211),
that can reverse the sign of ¢;. In particular, if the
contribution of dlnT,/dlnni is neglected, this condition
can be written as
T
=2 ‘i:"{l -nld(z,) -1}, (215)
I

where Z, = Z%,/n; and the function d(Z,) depends on the
specific regime considered. Thus, in the case of re-
gime (a),®

0.41 0.35 \*
d(Ze)—(O. 30+ 5ea Ze><o.47+ e Ze)

It should be noticed that d(Z,) approaches unity as Z,—0,
and is less than one for all finite values of Z, for this

case. For regime (b),*
0.09+0,50Z,
o . e
AZ)~1+ =G5 7 s

while for regime (c), !5
dz,)=~3.
If we define

1

"= HZ)=1" (218)

the relevant flow of impurities is inward for n;<7,, and
they will tend to accumulate at the center of the plasma
column. For n;>17,, the relevant flow is outward and
the impurities will tend to concentrate at the edge of the
plasma column. We should, of course, consider that
n; and 7, are functions of the plasma radius so that it is
difficult to indicate, in general, the precise type of im-
purity density profile that can be generated. For the
cases treated in Refs, 14 and 15, the value of 7, is al-
ways greater than or about two,

As we pointed out in the previous sections, the direc-
tion of the impurity flows produced by the modes we
have discussed depends on the values of n,/ M. In par-
ticular, 7;,=1+2 for the short wavelength collisionless
modes treated in Sec. IV and 7;, =Z for the collisional
modes treated in Sec. III as well as for the “trapped-
ion” modes treated in Secs. V and VI. We notice that a
condition where 7; > 7;, can be more realistically real-
ized in actual experiments than 7,22 as required by the
collisional equilibrium theory for an outward-directed
impurity flow. Thus, we may imagine situations where
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the quasi-linear effects of impurity modes oppose the
direct effect of collisions, which is to bring impurities
into the plasma, when 7; is greater than 7,;, for im-
purity modes, but less than 7, for collisions.

Finally, we summarize the properties of the modes
we have discussed in Table I.
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APPENDIX

In the following we shall derive the full dispersion
relation of the dissipative mode treated in Sec. III.

The linearized main ion and impurity ion momentum
balance equations along the magnetic field are

T -
mm,[at -V, (—f;::;:— ) V.,] g

= ~[n,e9,0 + T,Vii, + (1 + a; )V, T;)
= mynBy vy (@ = %)

and
9 - ~ -
myn; Q”I“ =—-n,ZeVy¢ -V, Ty = T,V

+ @V Ty + BV (U — up))

which reduce, respectively, to

. BT\ - k = -
(1 + Ty w]/"ir:l.)ui" = mir"liw [n¢8¢ + Tfni +n,-(1 + au)T‘]
1

- Bir %)u(aiu -up) , (A1)

By D o 7 T
Uy = ——(n;2ed +n, Ty +n, Ty — ay ; Ty)
4 wm’nz( I (,b T+ 141 i1’% + 4

mm; vy
+18y

mn, (uill_uﬂl) (A2)

where p; is a viscosity coefficient. The main ion and
impurity ion thermal energy balance equations are

3 9 T, - VéxB

- - m -~ -
=y Ty V(U —p) - 3 ;LVu( T, - T,
i

and
3 9 - v x B
3 QT’ =°32‘C'—¢§2——' vT, - T;v||(u1|l)+3 ViI(Ti )
which can be written, respectively, as
(E +ix ka; i‘;_ - 3 ed wpy . kuaiu ra ku(;‘iu —;‘[u)
2 Mwym )T, 2T, w i w
T,
-3: 74 Y _i__.L
3i ” W T (A3)

and
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sty Tim Ty

L.
T, mm, w T;

wz( Rty I

Do oo
Do e
iTH8

where wyp,=k,(c/eB) (dT,/dx) with j=1, I.

We consider the limit in which impurity-ion collisions
are dominant [see Eq. (28)], so that

% Yy,

mn, W
Then, we find from Eq. (A4) that the energy transfer
due to - I collisions is such that
i"! >~ i‘i .
Since we take n,;/n; <« 1, we may neglect the collisional
energy transfer to the main ions. Then, the main ion
thermal energy balance equation (A3) can be written as

3 Ty _-.L_ éﬂt 3
(2 + wuim‘) T, ' T, @ (1-2m)
n ki~ -
+ ;:‘ + 0y Z)l(uill -up), (A5)

where we made use of the main ion mass conservation
(23) to eliminatei 4.

The two ion momentum balance Eqs. (Al) and (A2)
reduce to

(A6)

By~ - i BT, (Z,ed T, 7 T,
U(u‘" =) = Bi Wy m, (—Zi T, 7‘1 771 =% ?:-) !
A7)
where we have neglected contributions of order #,/n;.
Subtracting the main ion and impurity ion mass conser-
vation Eq. (23) gives

SJtl

n ed By .- -
:n—:+°"—c:i(1-o,)-7-f?-;"(ui.,-u,..). (A8)
From Eqs. (A5)—(A8) and the quasi-neutrality condition

Z (n e(-b n
A2 (e ZF 4
ny Ze("i T, ”i)’ (49)

=t

we obtain the dispersion relation

. Z, N A
W+ A ?[o, -14+8,03n —1)]+l'22}é_

-8 a3 Z-n-Gn-v)|=0, @10
where
" W - o v - a,v
W=— =x+ =i L —iL
Wiy’ Xi =X Bir Vi Burfavy ’
7\t 3 5 T,\!
A=(1+—J—> A=<_+__L)
1 , ? 2 2 2 Te )
T T;
=Aastz, MK [ +—L<1 —L)]
VirBirXi T; " T./P
prto gy s KT
G = A4, . (A11)

In deriving Eq. (A10) we have neglected terms of order
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Z™'. Equation (A10) may be solved for & =®,+ ¥ to
yield

~ Z - . A3

@ = _<'76A1[(01 -D+o (G -1)]+14 728 )

1+ Cy+i€lwg+ 34,2,/ 2) 0, = 1) — A,(3n; - 1)]
~ A ~ -~ b
(1+ CyP+ Cwo+ 3452,/ Z) oy = 1) = Ay(3m; = 1)]?

(A12)
so that the condition for instability is
Z ~
- "Z'&Al[(ol -1)+&(3m -1)]

- A;
x[wo+ 3(Ze/ Z)Ap(0; - 1) - Ay(3n; - 1)) - 7202 >0.

(A13)
We see that if the last term in Eq. (A13) is dominant,
no instability can occur. In the limit where k3T;/wv,m;
>1, but is not too large, such that

1 ~
< C2<
Z.710,] cik1, (Al14)
we obtain
@ == (Ze/ 2) A0 - 1+ &y(3n; - 1), (A15)
and
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Y=~ DA Clem -1 = (Z,/2) A0, - 1)] . (A16)
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